Electronics Assembly Knowledge, Vision & Wisdom
3D Assembly Processes a Look at Today and Tomorrow
3D Assembly Processes a Look at Today and Tomorrow
This paper explores various technologies available today and some that are starting to appear and illustrates some key items for each technology.
Production Floor

Authored By:
David Geiger, Georgie Thein
AEG, FLEXTRONICS International Inc.
Milpitas, CA USA
,{url:'http://www.circuitinsight.com/videos/programs_final.mp4'}], clip:{autoBuffering:true, autoPlay:true, scaling:'scale' } }).ipad();
Summary
The world of electronics continues to increase functional densities on products. One of the ways to increase density of a product is to utilize more of the 3 dimensional spaces available. Traditional printed circuit boards utilize the x/y plane and many miniaturization techniques apply to the x/y space savings, such as smaller components, finer pitches, and closer component to component distances.

This paper will explore the evolution of 3D assembly techniques, starting from flexible circuit technology, cavity assembly, embedded technology, 3 dimensional surface mount assembly, etc.

We will explore various technologies available today and some that are starting to appear. This paper will illustrate some of the key items for each technology and what some of the key challenges would apply. The assembly processes needed for each of these areas will be touched upon and what items will be needed to be enhanced for continuing the drive to better utilization of the z axis area available on pcba processing.
Conclusions
In the past, to achieve a 3D assembly at the PCBA level, we used connectors or various assembly methods to perform B2B or B2F connection. To reduce component count on the PCB, we can use buried capacitance or as it currently evolves to embedded passives or actives to spare valuable board space.

From the assembly level, we look at PoP and cavity assembly in finer detail. PoP allows stacking of two components that will occupy only space for one component on the PCBA. Cavity assembly allows a reduction of thickness by recessing components below the top layer of the PCB.

Looking toward the future, we look at molded interconnect device and 3D structural electronics. There are many challenges, both in design of a 3D circuitry, and the manufacturing process required for 3D.
Initially Published in the IPC Proceedings
Submit A Comment

Comments are reviewed prior to posting. Please avoid discussion of pricing or recommendations for specific products. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Company


E-mail


Country


Comments


Authentication

Please type the number displayed into the box. If you receive an error, you may need to refresh the page and resubmit the information.



Related Programs
bullet One Big Cause of Assembly Problems
bullet Hand Printing using Nanocoated and other High End Stencil Materials
bullet Investigation Into the Durability of Stencil Coating Technologies
bullet Improve SMT Yields Using Root Cause Analysis in Stencil Design
bullet Unlocking The Mystery of Aperture Architecture for Fine Line Printing
bullet How To Determine Stencil Thickness
bullet Solder Paste Printing First Pass
bullet Stencil Printing for CSP's and 01005 Chips
bullet High-Volume-Manufacturing of BVA Enabled Advanced POP
bullet Development of a Robust 03015 Process
More Related Programs