Electronics Assembly Knowledge, Vision & Wisdom
3D Assembly Processes a Look at Today and Tomorrow
3D Assembly Processes a Look at Today and Tomorrow
This paper explores various technologies available today and some that are starting to appear and illustrates some key items for each technology.
Production Floor

Authored By:
David Geiger, Georgie Thein
AEG, FLEXTRONICS International Inc.
Milpitas, CA USA
,{url:'http://www.circuitinsight.com/videos/programs_final.mp4'}], clip:{autoBuffering:true, autoPlay:true, scaling:'scale' } }).ipad();
Summary
The world of electronics continues to increase functional densities on products. One of the ways to increase density of a product is to utilize more of the 3 dimensional spaces available. Traditional printed circuit boards utilize the x/y plane and many miniaturization techniques apply to the x/y space savings, such as smaller components, finer pitches, and closer component to component distances.

This paper will explore the evolution of 3D assembly techniques, starting from flexible circuit technology, cavity assembly, embedded technology, 3 dimensional surface mount assembly, etc.

We will explore various technologies available today and some that are starting to appear. This paper will illustrate some of the key items for each technology and what some of the key challenges would apply. The assembly processes needed for each of these areas will be touched upon and what items will be needed to be enhanced for continuing the drive to better utilization of the z axis area available on pcba processing.
Conclusions
In the past, to achieve a 3D assembly at the PCBA level, we used connectors or various assembly methods to perform B2B or B2F connection. To reduce component count on the PCB, we can use buried capacitance or as it currently evolves to embedded passives or actives to spare valuable board space.

From the assembly level, we look at PoP and cavity assembly in finer detail. PoP allows stacking of two components that will occupy only space for one component on the PCBA. Cavity assembly allows a reduction of thickness by recessing components below the top layer of the PCB.

Looking toward the future, we look at molded interconnect device and 3D structural electronics. There are many challenges, both in design of a 3D circuitry, and the manufacturing process required for 3D.
Initially Published in the IPC Proceedings
Submit A Comment

Comments are reviewed prior to posting. Please avoid discussion of pricing or recommendations for specific products. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Company


E-mail


Country


Comments


Authentication

Please type the number displayed into the box. If you receive an error, you may need to refresh the page and resubmit the information.



Related Programs
bullet Strain Measuring Technology in Board Level Assembly Process
bullet Ultra Low Profile Copper Foil for Very Low Loss Material
bullet Larger Stencil Apertures and Type 4 Paste
bullet Stencil Printing for Challenging Heterogeneous Assembly Applications
bullet Advanced Printing for Microelectronic Packaging
bullet Reliability of Stacked Microvia
bullet Assembling Boards with BGAs on Both Sides
bullet Printing of Solder Paste - A Quality Assurance Methodology
bullet What is Solder Paste Working Life on a Stencil?
bullet FEA and Analysis for BGA-CGA Assemblies Under Thermal Cycling
More Related Programs