Research
Embedded Components from Concept-To-Manufacturing
Copper Foil Elements Affecting Transmission Loss with High Speed Circuits
pH neutral Cleaning Agents - Market Expectation & Field Performance
Reducing Dust Deposition on Electronic Equipment
New Requirements for Sir Measurement
Effects of Mixing Solder Sphere Alloys with Bismuth-Based Pastes
The Development of a 0.3 mm Pitch CSP Assembly Process
Generalizations About Component Flatness at Elevated Temperature
MORE RESEARCH
Latest Industry News
iPhone 12 Production Could Be Delayed
Acer sees PC component shortages
Bio-Ink for 3-D Printing Inside the Body
Covid Seen Driving the Security Sector
U.S. Eases Restrictions on Private Remote-Sensing Satellites
EMS Manufacturing quote complexity drives OEMs to look behind EMS curtain
U.S. Manufacturing Rebounds to 14-Month High
IBM's New AI Tool Parses A Tidal Wave of Coronavirus Research
MORE INDUSTRY NEWS

Ultrathin Fluoropolymer Coatings to Mitigate PCB Damage



Ultrathin Fluoropolymer Coatings to Mitigate PCB Damage
Ultra-thin fluoropolymer coatings were tested by industry approved test methods to determine whether this level of process was possible.
Materials Tech

DOWNLOAD

Authored By:


Erik Olson, Molly Smith, Greg Marszalek, Karl Manske
3M Company
St. Paul, Minnesota

Summary


As consumers become more reliant on their handheld electronic devices and take them into new environments, devices are increasingly exposed to situations that can cause failure. In response, the electronics industry is making these devices more resistant to environmental exposures. Printed circuit board assemblies, handheld devices and wearables can benefit from a protective conformal coating to minimize device failures by providing a barrier to environmental exposure and contamination.

Traditional conformal coatings can be applied very thick and often require thermal or UV curing steps that add extra cost and processing time compared to alternative technologies. These coatings, due to their thickness, commonly require time and effort to mask connectors in order to permit electrical conductivity. Ultra-thin fluorochemical coatings, however, can provide excellent protection, are thin enough to not necessarily require component masking and do not necessarily require curing.

In this work, ultra-thin fluoropolymer coatings were tested by internal and industry approved test methods, such as IEC (ingress protection), IPC (conformal coating qualification), and ASTM (flowers-of-sulfur exposure), to determine whether this level of protection and process ease was possible.

The fluoropolymer coatings chosen for this test were created in a range of coating solids and application thicknesses (100 nm to 30 um). Being a solution, these coatings were easy to apply by either vertical dip or atomized spray methods. In this study, it was found that both the application method and the thickness of the fluoropolymer coating played a significant role in the level of corrosion resistance and water/vapor repellency results. The data generated demonstrates a general correlation of how thick an ultra-thin fluoropolymer coating must be in order to achieve certain levels of protection.

Conclusions


Protection of printed circuit boards and their components is an increasing concern as electronics are used in more environmental conditions. Sulfur, water vapor and water immersion can significantly shorten the working capabilities of an electronic device.

The testing above highlights how ultra-thin fluorochemical coatings and their thicknesses needed, can provide an effective barrier for metals, surfaces and electronic circuit boards for protection from sulfur, moisture, liquids, and corrosion. This barrier adds to the performance, longevity and reliability of the surfaces, metal connections and an electronic device's service life.

Initially Published in the IPC Proceedings

Comments

No comments have been submitted to date.

Submit A Comment


Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Your Company
Your E-mail


Your Country
Your Comments



Board Talk
Solder Paste Beyond The Shelf Life?
Issues With Fillets on Via Holes?
Can Tape Residue Contaminate a Clean Tank?
Suggested Stencil Wipe Frequency?
Reflow Oven Zone Separation Challenges
When To Use Adhesive To Bond SMT Components
How To Clean a Vintage Circuit Board Assembly?
PCBA Inspection Concerns
MORE BOARD TALK
Ask the Experts
Lifted Lead on SOT Component
Allowable Bow and Twist on Round PC Fab
Mixed MSL Baking
Step Stencil Squeegee Angle
Solder Balling Splash After Reflow
Application Using No-Clean and Water Soluble Fluxes
IPC SOIC Defect Question
Mixed Process Solder Joint Appearance, Smooth or Grainy?
MORE ASK THE EXPERTS