Electronics Assembly Knowledge, Vision & Wisdom
Alternatives to Solder in Packaging and Assembly
Alternatives to Solder in Packaging and Assembly
This presentation surveys the landscape of alternatives to solder in interconnect, packaging, and assembly.
Materials Tech

Authored By:
Herbert J. Neuhaus, Ph.D., and Charles E. Bauer, Ph.D.
TechLead Corporation
Portland, OR, USA
,{url:'http://www.circuitinsight.com/videos/programs_final.mp4'}], clip:{autoBuffering:true, autoPlay:true, scaling:'scale' } }).ipad();
Summary
Solder plays a special role in the world of electronics manufacturing as evidenced by the disruptive nature of the lead-free movement. The intense search for attractive leadfree solders reveals the preeminent importance of solder to the industry. In fact, solder consumes so much attention that solder-less alternatives are often overlooked.

Material-based alternatives to solder include conductive adhesives and transient-phase compounds. Developments in nanotechnology spawned a virtual renaissance in conductive adhesives and other solder-less joining materials.

As a complement to the solder-less materials developments, embedded assemblies use conventional materials in novel ways to improve performance by cutting interconnect parasitics and increase reliability gains by eliminating wirebonds and solder-bumps. Freescale, Imbera, GE, Verdant, and many others develop and employ diverse approaches to embedding active devices.

Particle Interconnect represents another solder alternative. While originally developed for automated test, particle interconnect holds considerable promise in a variety of applications including LED assembly and printed electronics.

This presentation surveys the landscape of alternatives to solder in interconnect, packaging, and assembly. Next, the presentation treats practical implementation challenges such as yield management strategies and supply chain restructuring. Finally, the presentation concludes with a discussion of scenarios in which older alternatives offer highly compelling business and technical benefits.
Conclusions
The disruptive nature of the effort to replace lead-based solders reveals the central role played by solder in electronics assembly. Lead-free solders require higher temperatures and increase the thermal tolerance requirements of electronic components. As a result, the industry has become increasingly open to solder-less alternatives.

TechLead has identified three broad families of solder alternatives: materials-based, process-based, and structurebased. Each family enjoys renewed interest and new applications. As with many disruptive technologies, the need for some supply chain restructuring limits adoption. However, TechLead forecasts that demand for performance and reliability will overcome adoption barriers.

Initially Published in the SMTA Proceedings
Submit A Comment

Comments are reviewed prior to posting. Please avoid discussion of pricing or recommendations for specific products. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Company


E-mail


Country


Comments


Authentication

Please type the number displayed into the box. If you attempt to submit information and receive an error, you may need to refresh the page and insert the information again.



Related Programs
bullet Solderability of Vapor vs. Convection Reflow
bullet Performance and Reliability Requirements of Soldering Fluxes
bullet Mechanical Behavior of Bi-Containing Pb-Frees
bullet Solder Paste Prep Before Use
bullet Microalloyed Sn-Cu Pb-Free Solder for High Temp
bullet VOC Free Flux Study
bullet Alternatives to Solder in Packaging and Assembly
bullet Can You Mix Leaded and Lead-free?
bullet Activator Technology for Lead-Free Paste
bullet Nano Silver Replacement for High Lead Solders
More Related Programs
About | Advertising | Contact | Directory | Directory Search | Directory Submit | Privacy | Programs | Program Search | Sponsorship | Subscribe | Terms

Circuit Insight
6 Liberty Square #2040, Boston MA 02109 USA

Jeff Ferry, Publisher | Ken Cavallaro, Editor/Business Manager

Copyright © Circuitnet LLC. All rights reserved.
A Circuitnet Media Publication