Research
Fill the Void II: An Investigation into Methods of Reducing Voiding
Final Finish Specifications Review
DFX on High Density Assemblies
Challenges on ENEPIG Finished PCBs
Testing PCBs for Creep Corrosion
Screening of Lower Melting Point Pb-Free Alloys
Hand Printing using Nanocoated and other High End Stencil Materials
Board Processes and Effects on Fine Copper Barrel Cracks
MORE RESEARCH
Latest Industry News
Foxconn Says China Can No Longer Be 'The World's Factory'
Microsoft's new phone is ... $1,400? Why?
Hon Hai says Q2 results satisfactory
China Launches Beidou, Its Own Version of GPS
Do Engineers Live Longer? A Look at Occupational Factors' Effect on Longevity
The iPhone is still breaking sales records during the pandemic
How to Work from Home Successfully
Smartphone shipments in China plunge 35% in July
MORE INDUSTRY NEWS

BVA: Molded Cu Wire Contact Solution



BVA: Molded Cu Wire Contact Solution
This paper addresses the primary technological challenges for reducing contact pitch and package-on-package interface technology.
Materials Tech

DOWNLOAD

Authored By:


Vern Solberg and Ilyas Mohammed
Invensas Corporation
San Jose, California USA

Summary


Stacking heterogeneous semiconductor die (memory and logic) within the same package outline can be considered for less
complex applications but combining the memory and processor functions in a single package has compromised test efficiency and overall package assembly yield. Separation and packaging the semiconductor functions into sections, on the other hand, has proved to be more efficient and, even though two interposers are required, more economical.

The separated logic and memory sections are configured with the same uniform outline for vertical stacking (package-on
-package). The most common configuration places the logic section as the base with second tier memory section soldered to a mating contact pattern.

This paper addresses the primary technological challenges for reducing contact pitch and package-on-package interface
technology. Research results will be presented that will illustrate multiple methods for forming smaller and finer pitch contacts on the base package section using existing wire-bond and transfer mold technology. The process developed utilizes copper bond-wire that enables several profile variations and can furnish an array configured contact pitch at or below 200m. The benefits are immediately seen.

This interconnect solution is very economical and lends itself to a wide variety of 3D packaging, including multiple-rows and area array, fan-in and fan-out, flat or step mold, bond wires present on bottom or top package, bottom package face-up or face-down die orientations.


Conclusions


Increasing demand for product miniaturization and high-performance computing continue to call for higher density devices and modules. The mobile electronics markets continue to see significant growth. Developers of UltraBook, smart phones and tablet products are now adopting multi-core processors and they need greater memory bandwidth. To meet these market trends, manufacturers are expecting faster process capability and greater memory bandwidth to be packed into less space with reduced power. Developers continue to design products that furnish greater functionality. Their goals often include reducing product size and weight.

To achieve the expanded functional capability, however, leads to adapting more complex and higher I/O semiconductors. The ideal package outline for many of these products will range between 10mm square to 14mm square. The semiconductor die outline and I/O requirement is often the primary limiting factor on the ultimate package outline dimensions. The 14mm square BVA package outline with 0.2mm contact pitch between the lower and upper PoP sections can accommodate up to 1440 I/O using the same amount of area currently required for a 288 I/O, 0.5mm pitch FBGA configured PoP.

Initially Published in the IPC Proceedings

Comments

No comments have been submitted to date.

Submit A Comment


Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Your Company
Your E-mail


Your Country
Your Comments



Board Talk
Cleaning Reballed BGA Components
We Bake, But Still Have Delamination, Why?
Reflow For Rigid Flex
Solder Paste Volume for BGA Rework
Problems With Starved "J" Lead Joints
Delay Before Cleaning Partial Assemblies
Can a CTE Mismatch Cause Reliability Problems?
Solder Paste Transfer Efficiency - What/Why
MORE BOARD TALK
Ask the Experts
Soldering Components with Silver Pads
Environment Impact on Assembly, Printing and Reflow
Solder Balling Prediction Formula
Old Components and Blow Holes
Estimating Failure Rate During Rework
Coating to stop tin whisker growth?
Cleaning an assembled board with IPA
Remove and replace a 240 pin connector
MORE ASK THE EXPERTS