Research
Innovative Panel Plating for Heterogeneous Integration
A Method to Investigate PCB Supplier Rework Processes and Best Practices
The Effects of PCB Fabrication on High-Frequency Electrical Performance
Aerosol Jet Printing of Conductive Epoxy for 3D
EOS Exposure of Components in the Soldering Process
High Thermo-Mechanical Fatigue and Drop Shock Resistant Alloys
Filling of Microvias and Through Holes by Electrolytic Copper Plating
NASA DOD Phase 2: Copper Dissolution Testing
MORE RESEARCH
Latest Industry News
Smartphone Shipments to Plummet 11.9% in 2020
PC market to dip 7% this year
Alternate Roads to Flexible Electronics
Huawei hid business operation in Iran after Reuters reported links to CFO
Global Distributor Group Tackles Tariff Inefficiencies
How to Set Boundaries While Working Remotely
Apple must face U.S. shareholder lawsuit over CEO's iPhone, China comments
The AI-Based Competitive Revolution
MORE INDUSTRY NEWS

Insulation Resistance of Dielectric Materials



Insulation Resistance of Dielectric Materials
This investigation measures the leakage within internal PCB layers during exposure of various specimens to a controlled ground-based test environment.
Materials Tech

DOWNLOAD

Authored By:


C. M. Mc Brien, S. Heltzel
ESTEC-ESA, Netherlands


Summary


For electrical equipment, current leakage in a printed circuit board (PCB) can result in intermittent or permanent failure. Current leakage can occur due to insulation resistance reduction between adjacent nets on a PCB. A working group of the European Cooperation for Space Standardization is drafting the standard ECSSQ-ST-70-12 on PCB design. Industry represented within this working group uses various design rules to define insulation distance as a function of voltage. The insulation distances are either based on material and design heritage or based on Generic Standard on Printed Board Design IPC-2221 [1]. The investigation involves measuring the leakage current within internal PCB layers Insitu

during exposure of various specimens to a controlled ground-based test environment and a simulated space environment. This novel test method produced results which show breach of insulation resistance within fiber contaminated samples. This proposes a revision of standard IPC-4101 to implement tighter cleanliness requirements of laminate materials. Clean samples exhibit no breach of insulation resistance which confirms the rules proposed in the design standard.


Conclusions


The following conclusions can be drawn based on the general trend of insulation resistance change:

1. The general insulation resistance during THB decreases significantly after thermal cycling. Second set of thermal cycles does not further affect the resistance drop.
2. The insulation resistance of epoxy boards decreases more than for the polyimide boards.
3. Continuous resistance decrease after thermal cycling is not considered a failure of insulation resistance as it does not indicate electromigration.

The following conclusions can be drawn based on the observations of failed individual patterns:

4. No internal or external patterns fail in the THB testing before thermal cycling.
5. About 20 patterns fail on samples of manufacturer A, whereas no significant failures are observed for manufacturer B. The samples made from Arlon 35N are made by both manufacturers and are directly
comparable.
6. For all samples where the defect was found by microsectioning, breach of insulation resistance is associated with fiber contamination, not with dielectric breakdown.

The following general conclusions can be drawn:

7. The design rule of 1 kV per mm insulation distance between internal circuit tracks does not cause dielectric breakdown after thermal cycling with margin, provided that no contamination is present.
8. The requirements for PCB base materials as detailed in IPC-4101C may not be adequate to prevent breach of insulation if worst-case imperfections are indeed present in the PCB. This is a particular concern for space industry because of the high-reliability applications and worst-case environment.


Initially Published in the IPC Proceedings

Comments

No comments have been submitted to date.

Submit A Comment


Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Your Company
Your E-mail


Your Country
Your Comments



Board Talk
How Effective Is Nano Coating On Stencils?
What Causes Board Delamination?
01005 Component Challenges and Bugs
Sticky Residue Under Low Clearance Parts
Soldering Relays Intrusively in Lead Free Process
Printing vs. Dispensing
Maximum Board Temperature During Tin-Lead
Is There a Spacing Spec for SMD Components?
MORE BOARD TALK
Ask the Experts
HASL vs. Immersion Gold
Very Low Temp PCBs
Looking for Long-term Component Storage Options
Baking After Cleaning Hand Placed Parts
Conformal Coating Recommendation
Burned Chip Repair
BGA Component Grounding Problem
What is the IPC Definition of Uncommonly Harsh?
MORE ASK THE EXPERTS