Embedded Components from Concept-To-Manufacturing
Copper Foil Elements Affecting Transmission Loss with High Speed Circuits
pH neutral Cleaning Agents - Market Expectation & Field Performance
Reducing Dust Deposition on Electronic Equipment
New Requirements for Sir Measurement
Effects of Mixing Solder Sphere Alloys with Bismuth-Based Pastes
The Development of a 0.3 mm Pitch CSP Assembly Process
Generalizations About Component Flatness at Elevated Temperature
Latest Industry News
iPhone 12 Production Could Be Delayed
Acer sees PC component shortages
Bio-Ink for 3-D Printing Inside the Body
Covid Seen Driving the Security Sector
U.S. Eases Restrictions on Private Remote-Sensing Satellites
EMS Manufacturing quote complexity drives OEMs to look behind EMS curtain
U.S. Manufacturing Rebounds to 14-Month High
IBM's New AI Tool Parses A Tidal Wave of Coronavirus Research

Improving Density in Microwave Multilayer PCBs

Improving Density in Microwave Multilayer PCBs
Paper presents work performed to achieve LCP-based high density multilayer structures, describing the breadboards manufactured and tested.
Analysis Lab


Authored By:

David Nevo, Olivier Vendier, Jean-Louis Cazaux, Jean-Luc Lortal
Thales Alenia Space


The need in complexity for microwave space products such as active BFNs (Beam Forming Networks) is increasing, with a significantly growing number of amplitude / phase control points (number of beams * numbers of radiating elements). As a consequence, the RF component's package topology is evolving (larger number of I/Os, interconnections densification ...) which directly affect the routing and architecture of the multilayer boards they are mounted on.

It then becomes necessary to improve the density of these boards. It has already been demonstrated the benefits of non-PTFE (Teflon) materials for the manufacturing of microwave multilayer PCBs. The Liquid Crystal Polymer (LCP) is a very interesting candidate allowing, among others, to achieve RF and LF flexible interconnections. It has many advantages for packaging applications or manufacturing multilayer structures (low dielectric constant and losses, low water absorption, low CTE in X and Y axis.)

Mostly, this material is available in very thin layers, allowing to considerably reduce the total thickness of the board and favoring densification (decrease of via diameter, pads, track width...). However, the use of LCP for printed circuit board is fairly recent and few manufacturers have experience with this material. This paper will present the work performed to achieve LCP-based high density multilayer structures, describing the different electrical and technological breadboards manufactured and tested and presenting the results obtained.


The liquid crystal polymer is a very interesting candidate as a printed circuit board substrate and the work presented in this paper confirms this. Its excellent dielectric properties have been first measured up to 30GHz with an accurate characterization of cavity. Very good copper adhesion has been then observed even with high thermal stresses (soldering / desoldering).

A double sided breadboard has allowed to know the etching accuracy that can be achieved for high density circuits (small diameters, very fine track widths / isolations). Finally, the possibility to achieve etched resistors on LCP has been demonstrated both in outer layer and buried in the circuit, provided that you comply with a sufficient track width, in order to reduce their sensitivity to etching tolerances and protect them in case of high pressing temperature.

Initially Published in the IPC Proceedings


No comments have been submitted to date.

Submit A Comment

Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name

Your Company
Your E-mail

Your Country
Your Comments

Board Talk
Solder Paste Beyond The Shelf Life?
Issues With Fillets on Via Holes?
Can Tape Residue Contaminate a Clean Tank?
Suggested Stencil Wipe Frequency?
Reflow Oven Zone Separation Challenges
When To Use Adhesive To Bond SMT Components
How To Clean a Vintage Circuit Board Assembly?
PCBA Inspection Concerns
Ask the Experts
Lifted Lead on SOT Component
Allowable Bow and Twist on Round PC Fab
Mixed MSL Baking
Step Stencil Squeegee Angle
Solder Balling Splash After Reflow
Application Using No-Clean and Water Soluble Fluxes
IPC SOIC Defect Question
Mixed Process Solder Joint Appearance, Smooth or Grainy?