Research
Fill the Void II: An Investigation into Methods of Reducing Voiding
Final Finish Specifications Review
DFX on High Density Assemblies
Challenges on ENEPIG Finished PCBs
Testing PCBs for Creep Corrosion
Screening of Lower Melting Point Pb-Free Alloys
Hand Printing using Nanocoated and other High End Stencil Materials
Board Processes and Effects on Fine Copper Barrel Cracks
MORE RESEARCH
Latest Industry News
Soldiers could teach future robots how to outperform humans
The iPhone is still breaking sales records during the pandemic
Foxconn says China can no longer be "the world's factory"
The Counterintuitive Way Social Media Can Reduce Stress
Do Engineers Live Longer? A Look at Occupational Factors’ Effect on Longevity
How to Work from Home Successfully
Smartphone shipments in China plunge 35% in July: government data
China handset players launch 5G phones in Taiwan
MORE INDUSTRY NEWS

The Evolution of ICT



The Evolution of ICT
Paper describes how ICT advancements contribute to lowering overall manufacturing test costs by improving fault coverage, reliability, and throughput of production tests.
Production Floor

DOWNLOAD

Authored By:


Alan J. Albee
Teradyne Inc.
North Reading, Massachusetts

Summary


Many manufacturers employ one or more In-Circuit Test (ICT) systems in their PCB manufacturing facilities to help them detect manufacturing process and component defects. These "bed-of-nails" electrical test systems are highly valued for providing the qualities of simple program generation, high fault coverage, fast test throughput, low false fail rates, and exceptional diagnostic accuracy as compared to other available test and inspection techniques.

Advancements in PCB technologies, along with changing test philosophies and manufacturing business models in recent years have created new and diverse requirements for manufacturers of in-circuit test systems. Particular challenges that ICT manufacturers have had to address include the erosion of test point access in certain product sectors; the progression of ultra-low voltage components; the variable test requirements of different product applications; the varying test philosophies of different market segments and different manufacturing regions; and the demanding throughput requirements of high volume production facilities.

This paper highlights how in-circuit test systems have evolved in recent years to include innovations and advancements to address these challenges and trends. Topics that will be covered include boundary scan and functional test integration strategies; advancements in vectorless test techniques; incorporation of limited access electrical test techniques; test strategy analysis tools; high accuracy pin drivers and sensors; concurrent test throughput improvement options; scalable test performance capability architecture; and program development accelerators.

The paper describes how these new ICT advancements contribute to lowering overall manufacturing test costs by improving the fault coverage, reliability, and throughput of in-circuit production tests.


Conclusions


ICT systems have evolved to address the technology and business challenges of modern PCB manufacturing and their capabilities have advanced far beyond when they were first introduced. Reduced access test techniques, integration of boundary scan and embedded testability tools, advanced pin electronics capable of testing low voltage technologies, concurrent test capabilities, functional test capabilities, and scalable test system configurations have all combined to extend the life of ICT systems and make them one of the tools that is still most valued by high volume PCBA manufacturers.

Taking into consideration how the in-circuit tester has evolved since its introduction and all the electrical test capabilities that are now at its disposal that do not require actual physical test access, it may be time for the industry to stop categorizing these test systems as "In-Circuit Testers" because that name no longer reflects all the things that the tester has evolved to do.

It may be more appropriate to now start categorizing these versatile test systems as "Electrical Test Controllers" because the most capable ones can support in-circuit, boundary scan, PLD programming, cluster and functional testing techniques all in a single consolidated test platform.

Initially Published in the IPC Proceedings

Comments

No comments have been submitted to date.

Submit A Comment


Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Your Company
Your E-mail


Your Country
Your Comments



Board Talk
Cleaning Reballed BGA Components
We Bake, But Still Have Delamination, Why?
Reflow For Rigid Flex
Solder Paste Volume for BGA Rework
Problems With Starved "J" Lead Joints
Delay Before Cleaning Partial Assemblies
Can a CTE Mismatch Cause Reliability Problems?
Solder Paste Transfer Efficiency - What/Why
MORE BOARD TALK
Ask the Experts
Soldering Components with Silver Pads
Environment Impact on Assembly, Printing and Reflow
Solder Balling Prediction Formula
Old Components and Blow Holes
Estimating Failure Rate During Rework
Coating to stop tin whisker growth?
Cleaning an assembled board with IPA
Remove and replace a 240 pin connector
MORE ASK THE EXPERTS