Fill the Void II: An Investigation into Methods of Reducing Voiding
Final Finish Specifications Review
DFX on High Density Assemblies
Challenges on ENEPIG Finished PCBs
Testing PCBs for Creep Corrosion
Screening of Lower Melting Point Pb-Free Alloys
Hand Printing using Nanocoated and other High End Stencil Materials
Board Processes and Effects on Fine Copper Barrel Cracks
Latest Industry News
Foxconn Says China Can No Longer Be 'The World's Factory'
Microsoft's new phone is ... $1,400? Why?
Hon Hai says Q2 results satisfactory
China Launches Beidou, Its Own Version of GPS
Do Engineers Live Longer? A Look at Occupational Factors' Effect on Longevity
The iPhone is still breaking sales records during the pandemic
How to Work from Home Successfully
Smartphone shipments in China plunge 35% in July

Direct Determination of Phosphorus Content in Electroless Nickel Plating

Direct Determination of Phosphorus Content in Electroless Nickel Plating
Developments in XRF instrument hardware and software have extended the measurement application of electroless plating processes to nearly any substrate.
Analysis Lab


Authored By:

Michael Haller
Jim Bogert, Ryan Boyle
Fischer Technology, Windsor CT, USA

Volker Rößiger, Wolfgang Klöck
Helmut Fischer GmbH, Sindelfingen, Germany


Electroless plating processes are popular because of their performance, reliability and cost effectiveness. The process combines unique deposit properties such as uniform plating build up regardless of geometry, excellent corrosion resistance, superior hardness and wear and the ability to plate on non-conducting materials. The most commonly used electroless plating process is Electroless Nickel (EN) plating using nickel phosphorus baths.

The phosphorus content plays a fundamental role in all physical properties of the deposit. It is, therefore, critical to control the phosphorus content within a relatively tight range. X-ray fluorescence is an excellent method to not only measure plating thickness but also weight percent elemental composition of coatings. Previously, it was only possible to measure plated phosphorus content on steel substrates. New developments in XRF instrument hardware and software have extended the measurement application of electroless plating processes to nearly any substrate. The simultaneous measurement of thickness and composition is critical.


New developments in XRF hardware and software technology have made it possible to simultaneously measure % phosphorous and NiP coating thickness in air. Being able to measure the phosphorous content directly now allows determination of the % phosphorous in electroless Ni-plantings on substrates in addition to iron, such as, Al or even non metallic substrates. Instruments with SDDs can measure the P-K radiation quite well using soft primary excitation (10 kV, non-filtered). Coating thickness is determined using harder excitation (30 keV or 50 kV).

The information depth for phosphorus is relatively low (<1 m) due to the low energy of P-K fluorescence. Conventional indirect determination of phosphorus can still be regarded as a relatively robust method with proportional counter tube instruments - the only option with these instruments.

Initially Published in the IPC Proceedings


No comments have been submitted to date.

Submit A Comment

Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name

Your Company
Your E-mail

Your Country
Your Comments

Board Talk
Cleaning Reballed BGA Components
We Bake, But Still Have Delamination, Why?
Reflow For Rigid Flex
Solder Paste Volume for BGA Rework
Problems With Starved "J" Lead Joints
Delay Before Cleaning Partial Assemblies
Can a CTE Mismatch Cause Reliability Problems?
Solder Paste Transfer Efficiency - What/Why
Ask the Experts
Soldering Components with Silver Pads
Environment Impact on Assembly, Printing and Reflow
Solder Balling Prediction Formula
Old Components and Blow Holes
Estimating Failure Rate During Rework
Coating to stop tin whisker growth?
Cleaning an assembled board with IPA
Remove and replace a 240 pin connector