Research
Embedded Components from Concept-To-Manufacturing
Copper Foil Elements Affecting Transmission Loss with High Speed Circuits
pH neutral Cleaning Agents - Market Expectation & Field Performance
Reducing Dust Deposition on Electronic Equipment
New Requirements for Sir Measurement
Effects of Mixing Solder Sphere Alloys with Bismuth-Based Pastes
The Development of a 0.3 mm Pitch CSP Assembly Process
Generalizations About Component Flatness at Elevated Temperature
MORE RESEARCH
Latest Industry News
iPhone 12 Production Could Be Delayed
Acer sees PC component shortages
Bio-Ink for 3-D Printing Inside the Body
Covid Seen Driving the Security Sector
U.S. Eases Restrictions on Private Remote-Sensing Satellites
EMS Manufacturing quote complexity drives OEMs to look behind EMS curtain
U.S. Manufacturing Rebounds to 14-Month High
IBM's New AI Tool Parses A Tidal Wave of Coronavirus Research
MORE INDUSTRY NEWS

Reterminated RoHS Components for SnPb Applications



Reterminated RoHS Components for SnPb Applications
This paper discusses a recent joint industry project to evaluate the retermination process on a range of electronic package styles.
Analysis Lab

DOWNLOAD

Authored By:


Chris Hunt, Martin Wickham, Ling Zou, Owen Thomas and Bufa Zhang
National Physical Laboratory
Teddington, UK

Summary


The banning of Pb in electronic component termination finishes has flushed through the supply chain making it impossible in some cases for hi-reliability users to purchase Pb containing interconnects. It has also led to increasing problems with tin whiskers.

Many end-users are now reterminating components with SnPb solder. This paper will discuss the results of a recent joint industry project undertaken at NPL to evaluate the retermination process on a range of electronic package styles. Details will be given of package styles covered, evaluation techniques employed, inter-comparison of reliability data, results and areas of concern.


Conclusions


A range of RoHS compliant components have been examined after retermination by two different retermination process suppliers. Few differences were noted between the suppliers, except that some damage to terminations of fine pitch gull wing leads was noted on the supplier who utilised manual handling during the retermination process. XRF measurements showed all components were RoHS non-compliant after retermination with at least 25% Pb present in all terminations.

Solderability was acceptable for all reterminated components, being as good as or better than the measurements for the
original components. In some examples, reterminated components showed increased solder thickness at the bend of terminations. This may lead to problems during component placement, particularly for fine pitch components. Additionally, thinner solder was noted around the edges of terminations compared to the original examples. After long term storage, these areas may present poor solderability during assembly.

Solder ingression along internal gull-wings of reterminated plastic bodied components was also noted. No solder was seen in the original components although the separation between the component body and lead-frame was present. No significant intermetallic thickening was noted as a result of the conversion process. Some through-hole components exhibited issues with poor coverage and package body damage. Poor coverage occurred when terminations exposed outside the package body were not solderable, due to the method of component manufacture or where the terminations extended into cavities within the component body.

Several examples of damage to TH component bodies were also seen in areas of components would not see molten solder temperatures in the soldering operation. Scanning acoustic microscopy did not locate any differences between original and reterminated components. Ball shear measurements on ball grid array components were acceptable. Thermal cycle solder joint reliability was improved for reterminated components compared to Sn originals. This was related to the increased solder joint volumes associated with the reterminated components, resulting in a greater stand-off.


Initially Published in the IPC Proceedings

Comments

No comments have been submitted to date.

Submit A Comment


Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Your Company
Your E-mail


Your Country
Your Comments



Board Talk
Solder Paste Beyond The Shelf Life?
Issues With Fillets on Via Holes?
Can Tape Residue Contaminate a Clean Tank?
Suggested Stencil Wipe Frequency?
Reflow Oven Zone Separation Challenges
When To Use Adhesive To Bond SMT Components
How To Clean a Vintage Circuit Board Assembly?
PCBA Inspection Concerns
MORE BOARD TALK
Ask the Experts
Lifted Lead on SOT Component
Allowable Bow and Twist on Round PC Fab
Mixed MSL Baking
Step Stencil Squeegee Angle
Solder Balling Splash After Reflow
Application Using No-Clean and Water Soluble Fluxes
IPC SOIC Defect Question
Mixed Process Solder Joint Appearance, Smooth or Grainy?
MORE ASK THE EXPERTS