Electronics Assembly Knowledge, Vision & Wisdom
Material Selection for Reliable TMV Pop Assembly
Material Selection for Reliable TMV Pop Assembly
This paper investigates selected aspects of the above mentioned processes to better understand the critical factors associated with successful TMV PoP assembly.
Materials Tech

Materials Tech programs cover topics including:
Adhesives, Chemicals, Cleaning Solutions, Coatings, Components, Design, Embedded Technology, Fasteners, Finishes, Flex Circuits, Flip Chip, Fluxes, PC Fab, Solders, Solder Masks, Solder Paste and more.
Submit A Comment
Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name


Your Company


Your E-mail


Your Country


Your Comment



Authored By:
Brian Roggeman, David Vicari
Universal Instruments Corp.
Binghamton, NY, USA

Martin Anselm, Ph.D.
Lee Smith, Ahmer Syed
Amkor Technology, Inc.
Chandler, AZ, USA

Summary
The successful integration of package-on-package (PoP) stacking utilizing through mold via (TMV) technology hinges on a
robust assembly process. In this study, seven dip materials were investigated for high quality TMV PoP assembly by
optimizing machine settings to achieve proper material transfer. Film thickness was varied for each material to transfer enough material (target of 50% ball coverage) while preventing parts from sticking within the film. Assemblies were reflowed in both air and N atmospheres and yields were quantified.

It was determined that flux dipping provides for better TMV assemblies in air reflow due to the flux's ability to wet to and subsequently protect the TMV solder ball during reflow. All paste dipped materials experienced significant fallout in air reflow due to a non-coalescing of the TMV solder joint. All materials provided 100% assembly yields in N2 reflow.


Conclusions
The successful integration of PoP using TMV technology relies on careful attention to each aspect of the assembly process. Most of the attention is focused on soldering the top package to the bottom package because this relies on either a flux or paste dip process. Consideration over the material selection, film thickness and other machine variables is necessary to achieve best results.

Seven dipping materials, including two fluxes and five solder pastes, were investigated. Machine parameters were optimized for each material by setting a target of 50% ball coverage of the dip material, while preventing any parts from being stuck within the dip film. This exercise is necessary when evaluating new materials.

In this investigation, assembly yields were highly influenced by the reflow atmosphere. Nitrogen atmosphere produced 100% yields of both top and bottom packages for every material used in the study. Air reflow atmosphere resulted in noncoalescing TMV solder joints when the SCSP 200 package was dipped into solder paste. This is presumably due to oxide
formation on the unprotected TMV solder ball which is not sufficiently removed with the minimal flux available in dipping solder paste.

Five different dip pastes were used with varying degrees of success, while the flux dipped samples achieved excellent yields in air reflow. Additional efforts are taking place to enhance the assembly yields in air reflow, and ultimately qantify the reliability of these devices as a function of the assembly process and material selection.


Initially Published in the IPC Proceedings

Comments
No comments have been submitted to date.
Free Newsletter Subscription
Every issue of the Circuit Insight email newsletter will bring you the latest information on the issues affecting you and your company.

Insert Your Email Address

Directory Search


Program Search
Related Programs
bullet Failure Modes in Wire Bonded and Flip Chip Packages
bullet Evaluation of Molded Flip-chip BGA Packages
bullet Miniaturization of Hearing Aid Electronics Using Embedded Die Packaging
bullet Reliability of Fine Pitch Flip Chip BGA Packages for Automotive Applications
bullet Material Selection for Reliable TMV Pop Assembly
bullet Leadless Flip Chip PLGA for Networking Applications
bullet New Approaches to Develop a Scalable 3D IC Assembly Method
bullet Status and Outlooks of Flip Chip Technology
bullet Three Dimensional Integration Focusing on Device Embedded Substrate
bullet Multilayer Ceramic Capacitors: Mitigating Rising Failure Rates
More Related Programs