Innovative Panel Plating for Heterogeneous Integration
A Method to Investigate PCB Supplier Rework Processes and Best Practices
The Effects of PCB Fabrication on High-Frequency Electrical Performance
Aerosol Jet Printing of Conductive Epoxy for 3D
EOS Exposure of Components in the Soldering Process
High Thermo-Mechanical Fatigue and Drop Shock Resistant Alloys
Filling of Microvias and Through Holes by Electrolytic Copper Plating
NASA DOD Phase 2: Copper Dissolution Testing
Latest Industry News
How Telecom is Rolling Out 5G During a Pandemic
Can Software Performance Engineering Save Us From the End of Moore's Law?
Tech stocks have been a winning bet, but investors worry it will fade
All This Chaos Might Be Giving You 'Crisis Fatigue'
Notebook PCB makers to see tight capacity through 3Q20
How Effective Is Nano Coating On Stencils?
U.S. Critical Infrastructure Full of Security Holes
Auto Interior Is the New Exterior

Fireworks on the Plating Line

Fireworks on the Plating Line
A lab made low cost circuits by printing conductive ink on film. Suddenly a cloud of smoke moved over the line. What happen?
Mysteries of Science


A factory was making flexible circuitry commonly found in printers, disk drives and other electronic products requiring electrical connections between moving parts.

The factory used large rolls of raw materials wherever possible to make the handling process more efficient.  The factory lab had made a low cost circuit by printing conductive ink on low cost film and coating it with copper. 

This new process had almost no waste and only required conductive ink and plating copper.

The lab created a row of test circuits with improved conductive ink made up of a mixture of carbon black and metal powder.  The roller motors were turned on and the film moved slowly down the line.  Suddenly the film began to distort, shrink and a cloud of smoke moved over the line.

What caused this to happen? 

The rest of the story.

The circuits in the lab ran fine, but there was a very small distance between the point where power was applied, and the copper plating solution.  Current could flow over this short distance without too much electrical resistance. The factory plating line was a completely different situation.

The circuits rested on the top of the 12 inch diameter electrically powered rollers. The copper plating bath was at least 1 foot below the top of the rollers. Electrical current had to flow through the conductive ink over a distance of 12 to 15 inches. According to Ohm's Law, electrical resistance is directly proportional to distance, or length of the conductor.

This meant that the factory run produced 12 to 15 times more resistance than during lab tests. 

Power loss through resistance generates heat. The lab had inadvertently built a resistance heater on the plastic film.

As the film heated and melted, the conductors fell apart and caused sparking. Molten Mylar readily burns so the arcing and sparks were enough to ignite it. The melting and flaming plastic film fell into the plating solution that was mostly water and put out the fire. There was no easy fix to the problem.

The phrase, "Scale-ups are not linear" probably remained burned in the memories of the PhD's that forgot about Ohm's Law.


No comments have been submitted to date.

Submit A Comment

Comments are reviewed prior to posting. You must include your full name to have your comments posted. We will not post your email address.

Your Name

Your Company
Your E-mail

Your Country
Your Comments

Board Talk
How Effective Is Nano Coating On Stencils?
What Causes Board Delamination?
01005 Component Challenges and Bugs
Sticky Residue Under Low Clearance Parts
Soldering Relays Intrusively in Lead Free Process
Printing vs. Dispensing
Maximum Board Temperature During Tin-Lead
Is There a Spacing Spec for SMD Components?
Ask the Experts
Recommended Fiducial Shape
HASL vs. Immersion Gold
Very Low Temp PCBs
Looking for Long-term Component Storage Options
Baking After Cleaning Hand Placed Parts
Conformal Coating Recommendation
Burned Chip Repair
BGA Component Grounding Problem