Rethinking the Hierarchy of Electronic Interconnections

Joseph Fjelstad
Verdant Electronics
The Industry’s Terminology Challenge

» The electronics industry continues to explore and develop new methods to fabricate and interconnect its electrical and electronic devices.

» Establishing an understanding of how various elements fit together hierarchically is vital to extracting full benefit of technological progress in interconnection design architecture.

» Trying to keep pace in classifying and incorporating the various approaches to new interconnection schemes is proving quite challenging (e.g. new 2.5 and 3D solutions).

» The commonly accepted approach to illustrating how the elements of the electronic interconnection fit is rooted in a hierarchy that was developed in the 1960 & 70s.

» Unfortunately it no longer works for today’s more complex approaches to the interconnection of electronic elements.
Traditional Hierarchy of Interconnections
Jisso Interconnection Levels and The Evolving Hierarchy of Interconnections

» Jisso is a Japanese term which is used to describe the electronic interconnection hierarchy in Japan

» Jisso levels are similar to traditional levels but there is also a Level 0 which covers intellectual property matters

» The objective of defining Jisso levels is to assist in the communication between electronic product suppliers and users by illustrating how electronic elements are hierarchically assembled and identify standards which facilitate communication process

» Unfortunately, gaps are being created by what might be viewed as “interconnection technology plate tectonics”
JISSO Level Concept

Functional State

Property as the basis of JISSO

JISSO Level 0

JISSO Product Level

Physical State

JISSO Interface Level

Electronic System

Electronic Unit

Electronic Module

Electronic Package

Electronic Element

Suppliers

User

Functional/Physical State

JISSO Level 5
JISSO Level
Concept...
Alternate view
The Evolving Hierarchy of Interconnections
Evolving Technologies are Difficult to Neatly Categorize

• Many different solutions are being introduced
• Wafer stacking, Chip Stacking, TSV
• Multichip Packages
 – System in Package (SiP)
 – Package in Package (PiP)
 – Package on Package (PoP)
 – Package under Package (PuP)

• Embedded device solutions
Embedded Devices

Formed
- Resistors
 - Thin Film
 - Plated
 - Deposited
 - Thick Film
 - Carbon filled
 - Mixed fill
- Capacitors
 - Clad Laminates
 - Unfilled
 - Filled
 - Thin Film
 - Ceramic
 - Thick film
 - Photopolymer
 - Thick Film
 - Metal oxide pastes
 - Ceramic pastes
- Inductors
 - Etched
 - Printed

Placed
- Active Devices
 - Bare die
 - Flip Chip
 - Wire Bond
 - Packages
 - Solder
 - Conductive adhesive
- Discrete devices
 - Resistors
 - Solder
 - Conductive adhesive
 - Capacitors
 - Solder
 - Conductive adhesive
 - Inductors
 - Solder
 - Conductive adhesive

- Conductive adhesive
- Wire Bond
- Plated connection
- Plated connection
- Printed resistor
- Printed resistor
- Plated resistor
- Plated resistor
- Resistor paste in cavity
- Resistor paste in cavity
- Surface mounted in cavity
- Soldered to hole wall (horizontal or vertical)
- Annular ring resistor
Evolving Technologies are Difficult to Neatly Categorize

» Many different solutions are being introduced
» Wafer stacking, Chip Stacking, TSV
» Multichip Packages
 – System in Package (SiP)
 – Package in Package (PiP)
 – Package on Package (PoP)
 – Package under Package (PuP)

▪ Embedded device solutions
▪ Solder Alloy Free Electronics (SAFE)
Solderless Assembly for Electronics (SAFE)
Yet To Be Defined Interconnection Structures

Flexible circuits

Thermal spreader/Mezzanine connector Assembly

Metal core embedded device assemblies
Multi-Module Assembly (MMA)?
Terminology Gap Challenge

Unfortunately current Jisso and traditional levels do not clearly define the various interconnection technology gaps and the differences they entail...

The question for the industry is: How might JIC and the electronics industry respond to this ongoing challenge and capture the changes?
Possible Solution 1

Increase the number of Jisso levels?

> **Level 1** On chip interconnections (includes discrete devices)
> **Level 2** Off chip interconnections (either side)
> **Level 3** Chip to chip interconnections (any method)
> **Level 4** Chip to package interconnections (any direction)
> **Level 5** Package to package interconnections (any direction)
> **Level 6** Embedded device structures (with or without solder)
> **Level 7** Package to substrate interconnection (with solder)
> **Level 8** Substrate to substrate interconnection (any direction)
> **Level 9** System interconnections
Possible Solution 2

Create intermediate Jisso levels?

- **Level 1** On chip interconnections (includes discrete devices)
- **Level 1a** Off chip interconnections (either side)
- **Level 1b** Chip to chip interconnections (any method)
- **Level 1c** Chip to package interconnections (any direction)
- **Level 2a** Package to package interconnections (any direction)
- **Level 2b** Embedded device structures (with or without solder)
- **Level 3a** Package to substrate interconnection (with solder)
- **Level 3b** Package to substrate interconnection (socket, connector)
- **Level 4** Substrate to substrate interconnection (edge card, 2 piece)
- **Level 5** System interconnections (cables, connectors)
Summary

» The realm of electronic interconnections is evolving at a rapid clip and has already moved and is still moving in some unpredictable ways.

» To assure reliable communication between package and system designers, developers and fabricators while simultaneously allowing them to access the latest technologies, there will be need to understand, adapt to and embrace the rapid pace of change occurring in the electronics packaging and interconnection industry.

» These new solutions offer great promise but do also require a good amount of understanding and discipline to implement and harness their benefit

» Good communications will be key to the success of all
For More Information
Visit
http://jisso.ipc.org/