Before & After Reflow Characterization of FCBGA Voiding Utilizing High Resolution CT Scan, X-ray (2D & 3D) Imaging, and Cross Section with Digital Imaging

Gordon O'Hara, Matthew Vandiver, Jonathan Crilly / Nick Brinkhoff

Flextronics Corporation / North Star Imaging

Austin, Texas / Rogers, Minnesota

ABSTRACT

A joint project between Flextronics Inc. and North Star Imaging Inc. is being conducted to correlate current x-ray imaging and cross-section analysis of BGA voiding with state of the art high resolution CT-Scan imaging. Our primary objective is to validate the void measurements obtained from non-destructive imaging techniques, with the physically measured void measurements of cross sectioning. A secondary goal is to characterize void properties before and after reflow.

Typical AXI inspection equipment provides one to three horizontal planes of reference for BGA void measurements. CT Scan imaging provides a full 3D volumetric representation of the BGA void, allowing for size, volume, and void position data. Information that can be used in failure analysis and process characterization projects, without physical destruction of the printed circuit board.

Five 50.0 mm FCBGA devices and five 52.5mm FCBGA devices, with known voiding, are being used in the study. The voiding for each device has been measured on a 3D AXI machine (Figure 1), a2D off-axis high resolution x-ray machine (Figure 2), and CT-Scan system (Figure 3). The devices will then be placed and reflowed onto printed circuit boards. After reflow, all the voiding will be measured again using each piece of equipment. In addition, select voids will be cross-sectioned, polished, and measured using a high magnification digital microscope and correlated to the other x-ray imaging tools.

Figure 1 - Transmissive 2D X-ray Image of BGA Void

As originally published in the IPC APEX EXPO Proceedings.

Figure 2 - 3D AXI Mid-Ball Image of BGA Void

Figure 3 - CT Scan surface model, with partial cross section, of BGA void

INTRODUCTION

As complex electronic assemblies become faster and faster, power with associated heat dissipation, signal integrity (SI) and reliability become more important than ever. Solder joint voiding can potentially impact all of these. With cost pressures on companies producing these types of products, it is more important than ever to be able to properly diagnose and characterize voiding in a non-destructive fashion. Proper characterization will allow for adequate troubleshooting and process development needed to minimize or eliminate voiding. In addition, non-destructive void analysis can be used in failure analysis cases.

Over time, X-Ray technology used in the electronics industry has advanced from 2D transmissive, to 2D Off Axis, to 3D laminography, to 3D tomosynthesis. Resolution of x-ray tools has continued to advance along with the software required for automated analysis. Use of these tools has allowed identification and measurements of the voids in solder joints. Software has allowed for automated inspection of the solder joints to quickly identify and measure up 100 % of the solder joints per component and per assembly in a timely manner. Typically, this software allows for measurement at a specific point in the solder joint (i.e. PCB level, mid joint and Package level).

While many improvements have been made in these tools (including resolution), smaller voids and true position of these voids has been difficult to see without actual cross sectioning. Now with the latest advancements in X-Ray technology, a full high resolution 3D image is available using Cat Scan technology. CT technology allows for infinite cross sectioning in a non-destructive fashion.

The first objective of this work will be to correlate the most common X-Ray technologies used by the electronics industry. Each technology will be correlated, not only to the newest CT Scan technology but also to actual cross sections on a variety of void examples.

The second objective of this work will be to identify and characterize a variety of voids from incoming components through the SMT reflow process. Incoming components identified with solder voids will be subjected to a variety of reflow profile styles to determine what happens to them relative to size and position. Images and measurements will be taken before and after reflow using all the traditional X-Ray tools along with CT Scan. After all imaging has been completed; actual cross sections will be taken for comparison. In addition, components with incoming voids will be subjected to reflow under vacuum in an attempt to remove the voids prior to assembly.

METHODOLOGY

Design and fabricate custom fixtures capable of holding 50 x 50 mm FCBGA and a 52.5 x 52.5 mm FCBGA's in a dead bug position was needed for automated 3D inspection. Figure 4 shows the 10 up fixture while Figure 5 shows a close up view.

Figure 4 – Fixture for automated 3D X-Ray inspection

Figure 5 - Close up view of Fixture for automated 3D X-Ray inspection

Assemble one SMT Reflow Profile Board utilizing a large complex PCB with 50 x 50 mm and 52.5 x 52.5 mm FCBGA's.

Create three different style profiles called Ramp to Peak (Figure 6), Long Soak (Figure 7) and Medium Soak (Figure 8)

Figure 6 – Ramp to Peak SMT Reflow Profile

Figure 7 – Long Soak SMT Reflow Profile

Figure 8 – Medium Soak SMT Reflow Profile

Follow process flow diagram show in Figure 9

Figure 9 – Void Experiment Flow

VOID DETECTION METHODOLOGY

Three typical tools will be used for the experiment including 3D AXI (Figure 10), 2D X-Ray (Figure 11), Cross-Sectioning (Figure 12) along with a fourth non-typical tool called High Resolution CT Scan (Figure 13)

Figure 10 – 3D AXI Tool

Figure 11 – 2D X-Ray Tool

Figure 12 – Cross-Sectioning Tool

- Non-destructive
- Metrology Full dimensional analysis of solder / component characteristics
- Infinite cross sectioning capability
- Analysis is time consuming, with no automated analysis
- Geared toward Failure Analysis
- Costly for large form factors, up 36"x 48"scannable area

Figure 13 – High Resolution CT Scan Tool

Results

Figures 14 and Figure 15 show examples of the images collected from the experiment.

Figure 14 – Example 1 Of Images Collected using various tools

Figure 15 – Example 2 Of Images Collected using various tools

As originally published in the IPC APEX EXPO Proceedings.

Tables 1 through 4 show the various measurements for comparison along with images to help explain the data.

		3D A	XI				Pre-Reflow	Pre-Reflow Post-Reflow
				After		1	and the second second	And the second se
			Before	Reflow - %	% V oid			
			Reflow - %	Area	Area	11		
Component	Pin Location	Oven Profile	Area Voided	Voided	In cre ase		CONTRACTOR OF THE	and the second sec
Sample1	37	Long Scak	19.92%	21.60%	8 4 3 %		A DESCRIPTION OF TAXABLE PARTY.	
Sample1	122	Long Soak	18.57%	23.67%	27 A5 %			 Marco - Marco - Marco - Constraint
Sample 2	6	Long Scak	15.12%	0.00%	-100.00%		The second se	Contraction of the Contraction o
Sample 2	318	Long Soak	1 3.15%	2 3.3 6%	77.64%			
Sample 2	7 33	Long Scak	1 2.04%	14.44%	19 9 3%			
Sample 2	2254	Long Scak	10.73%	0.00%	-100.00%			
Sample 3	2090	MediumSoak	1 6.00%	4157%	159 21%			
Sample4	111	MediumSoak	19.40%	28.32%	45 98%			
Sample5	363	Ramp to Peak	16.59%	19.38%	16.82%			
Sample 6	5 21	Pamp to Peak	1 3.10%	35.00%	167 18%			
Sample 6	11 65	Pamp to Peak	10.73%	25.79%	140.35%			
Sample 6	1185	Pamp to Peak	10.73%	21.77%	102.89%			
Sample 6	1385	Ramp to Peak	18.77%	4 3.8 2%	133,46%			
Sample 6	1388	Ramp to Peak	15.72%	22.80%	45.04%			
Sample7	917	Va por Phase	1 2.75%					
		Vapor w/						
Sample7	1174	Vac uum	24.00%				1	
		Vapor w/						
Sample7	1679	Vac uum	1 2.00%				 Max void size p 	 Max void size position does not always
Sample®	366	Va por Phase	22.43%				pre-defined AXI	pre-defined AXI slices
Sample®	2194	Va por Phase	1 2.37%					
		Vapor w/						
Sample 9	275	Vac uum	11.89%					
		Vapor w/						
Sample 9	379	Vac uum	14.89%					

Table 1 – 3D AXI Results

2D X-ray								
Component	Pin Location	Oven Profile	Before Reflow - % Area Voided	After Reflow - % Area Voided	% Void Area Increase			
Sample 1	37	Long Scale	15.90%	16.40%	3149			
Sample 1	122	Long Scak	15.20%	15.20%	-3.20%			
Sample 2	6	Long Scak	1 2.00%	0.00%	-100.009			
Sample 2	318	Long Scale	11.70%	15.70%	34 19 9			
Sample 2	733	Long Scak	1 3.7 0%	16.00%	16.799			
Sample 2	2254	Long Soak	1120%	0.00%	-100.00%			
Sample 3	209.0	MediumSoak	17.00%	23.40%	37.659			
Sample 4	111	MediumSoak	16.60%	18.10%	9.04%			
Sample 5	363	Ramp to Peak	11.60%	11.30%	-2599			
Sample 6	521	Pamp to Peak	15.20%	20.10%	32.249			
Sample 6	1165	Ramp to Peak	11.00%	15.40%	40.00%			
Sample 6	1185	Pamp to Peak	9.90%	11.10%	12129			
Sample 6	1385	Ramp to Peak	25.30%	28.50%	12.659			
Sample 6	1300	Pamp to Peak	1 3.60%	17.10%	25.749			
Sample 7	917	Va por Phase	1620%	0.00%	-100.009			
Sample 7	1174	Vaporw/ Vacuum Vaporw/	11.74%	0.00%	-100.009			
Sample 7	1679	Vac uum	11.70%	0.00%	-100.009			
Sample 8	366	Vapor Phase	21.30%					
Sample S	219.4	Va por Phase	9.7 0%					
Sample 9	275	Vapor w/ Vacuum	11.40%	0.00%				
Sample 9	37.9	Vapor w/ Vacuum	14.30%	0.00%				

Max ball diameter, void diameter with only <u>x, v</u> void position information

 Void diameter increase not proportional to void % area increase

Physcial Cross Section										
Componen	Pin Location	Oven Profile	Max V oid X	Void Y	% Void Area					
Sample 1	37	Long Soak	183.69	171.48	11.29					
Sample 1	122	Long Soak	1 69 .22	16146	10.0%					
Sample 2	6	Long Soak	195.94	219.36	14.69					
Sample 2	318	Long Soak								
Sample 2	733	Long Soak								
Sample 2	2254	Long Soak								
Sample 3	2090	Medium Soa k	207.07	19 3.75	15.5%					
Sample 4	111	Medium Soa k	219.32	18 2.6 2	14.29					
Sample 5	363	Pamp to Peak	213.75	20 3.7 7	15.0%					
Sample 6	521	Pamp to Peak								
Sample 6	1165	Pamp to Peak	283.92	302.87	29.69					
Sample 6	1185	Ramp to Peak								
Sample 6	1385	Pamp to Peak	262.73	22716	22.09					
Sample 6	1388	Pamp to Peak	251.6	220,49	18.99					

Table 3 – Cross-Sectioning Results

- Measurements are most accurate among utilized technologies
- Difficult to know which direction to grind into ball without other x-ray tools as a guide
- · Difficult to grind parallel to component package
- · Easy to stop short, or grind past maximum void position

	 CT Imaging allows for 								
								Percent Y -	complete void and
			Before - Void	Before - Void	After - Void	After - Void Y-	Percent X -	Dim	characterization
omponent	Pin Location	Oven Profile	X-Dim (um)	Y-Dim (um)	X-Dim (um)	Dim (um)	Dim Increase	Increase	
Sample 1	37	Long Soa k	2 28.7 3	264.25	2 65.39	317.90	16.0%	20.3%	
Sample 1	1 22	Long Soa k	234.53	29 2 9 3	3 33.00	392.93	42.0%	341%	
Sample 2	6	Long Soa k	171.42	18 2.9 6	176.91	204.34	3.2%	11.7%	
Sample 2	318	Long Soa k	205.07	260.8 2	304.17	406.58	48.3%	55.9%	
Sample 2	7 33	Long Soa k	221.06	255.09	311.70	391.72	41.0%	5 3.6%	
Sample 2	2254	Long Soa k	205.43	27 3.8 3	245.52	3 38 .25	19.5%	23.5%	
Sample 3	2090	MediumSoak	278.26	331.69	389.63	475.51	40.0%	43,4%	
Sample 4	111	Medium Soak	233.43	30 6.7 6	288.22	363.27	23.5%	18,4%	
Sample 5	363	Pamp to Peak	241.36	18954	248.69	316.29	3.0%	66.9%	
Sample 6	5 21	Pamp to Peak			365.50	4 66 49			
Sample 6	11 65	Pamp to Peak			395.58	270 45			
Sample 6	1185	Pamp to Peak							
Sample 6	1385	Pamp to Peak			414.28	478.52			
Sample 6	1388	Pamp to Peak							

Table 4 – High Resolution Cat Scan Results

Table 5 shows the effect of the various profiles tried.

Table 5 = Effect of Profiling On Void Growth

Part of the experiment involved reflowing components in a Vapor Phase Reflow machine and turning on vacuum. Figure 16 show some basic information about the oven used, chemistry and parameters.

Figure 16 - Vapor Phase Reflow Details

Figure 17 shows the 2D X-Ray images before and after reflowing in the Vapor Phase oven using vacuum. 3D AXI was first used to confirm there were no detectable voids. 2D X-Ray images compare the same balls which confirm voids have mostly been removed beyond detection. CT Scans were not taken based on these results.

Figure 17 – Before and After results from Vapor Phase testing

DISCUSSION

From multiple void studies, it has been demonstrated that a soak style profile can greatly reduce voiding. Figure 18 shows an example of a void study using data from 3D X-Ray. This study was conducted on OSP PCB finish in Nitrogen environment. While one vendor may work slightly better at a ramp style profile, most tend to benefit from this style of profile (confused – benefit from soak?). While SMT solder pastes are mostly designed to work in air, most work well in N2 and will survive a longer profile which is what a soak style profile would represent. If running in air, perhaps a ramp or intermediate profile may work better so the vendor and part number of the SMT solder paste needs to be considered for the expected run environment.

In this figure, the Y axis represents number of voids. X axis represents void size bin.

Figure 18 – Example of void study using size distribution

Based on the consistency of results from a variety of void studies in both SnPb and Pb Free, we concluded that a soak style profile eliminates or greatly reduces voiding when compared to an Intermediate style or Ramp style reflow profile. It is from this position that this experiment was conducted.

Knowing and understanding the characteristics of voiding relative to a particular brand and part number of solder paste will point users to whether the reflow process and/or chemistry (SMT solder paste) is causing the voiding issue. Inspection of incoming components will determine if voids are present on incoming parts. 2D or 3D x-ray can easily be used to inspect for voids on incoming components.

CONCLUSIONS

Table 6 was created to summarize the key characteristics of each tool. A number was assigned to rank the various tools in these characteristics based on experience. Depending on eash user and type of products / business, these may change slightly. Also, a weighting factor could be applied. The color (red, gree & yellow) is an added visual indicator.

	2D X-ray	3D AXI	CTScan	Cross-Section				
Image Resolution	3	4	2	1				
Preparation Time	1	2	3	4				
Automation	2	1	3	4				
Measurement Accuracy	3	4	2	1				
Slice Qty & Position	4	2	1	3				
Analysis Time	2	1	3	4				
Void Location	4	3	1	2				
1 = Best 4 = Worst								

Table 6 – Void Detection Tool Characteristic Rankings

3D AXI is necessary to screen out significant quantities of components as data points, prior to further characterization

Combination of available void detection technologies are needed for complete characterization of process and components, especially for increased complexity (i.e. via in pad, finer pitch, etc,,,)

PCB and Component Design, Reflow profile parameters as well as chemistry can all affect growth and positioning of voids

High Resolution CT Imaging allows for a complete analysis of components before and after assembly in non-destructive manner

While IPC 7095B introduced tables for void process indicators and troubleshooting and JEDEC Std 217 has a guideline for component voids allowed (pre-reflow), a clear joint industry specification needs to be considered to create better linkage between component manufacturing and PCB Assembly & Inspection

ACKNOWLEDGEMENTS

- Jonathan Crilly Flextronics, Austin, Tx
- Eric Cruz Flextronics, Austin, Tx
- Taylor Blair Flextronics, Austin, Tx
- Nick Brinkhoff North Star Imaging
- Florian Wuest IBL Germany

Jochen Lipp – IBL USA

Before and After Reflow Characterization of FCBA Voiding

Authors: Gordon O'Hara, Matthew Vandiver, Flextronics – Austin, TX

Contents

SIOS "O

- Experiment Parameters
- Tools for Void Identification
- Before & After Void Characterization
- Process Considerations for Void Minimization

APEX EXPO Pro

- Void Removal
- Conclusions

BACKGROUND

Background

0" 2012

- 3% component level fallout at 3D AXI due to voids failing to meet customer requirements
- Expensive component replacement cost
- Voiding isolated to specific component type from single source supplier
- Process and chemistry set characterized
- Test results indicted incoming component issue
- Developed tooling and AXI program for screening incoming material to <15% void area per JEDEC Standard 217 guidelines

Process Characterization

Fixture for 3D AXI Screening

anillin a

EXPERIMENT PARAMETERS

Experiment Flow Chart

- 10 FCBGA ASICS used for Analysis
- Before / After Reflow Void Characterization
 - 2D X-ray
 - 3D AXI
 - High Resolution CT Imaging
- After Reflow Cross-Sectioning

Void Detection Methodology

TOOLS FOR VOID IDENTIFICATION

3D AXI

EXPO^{*} 2012

<u>4 P FX</u>

IPC

Tp;

originally published in the IPC APEX EXPO Proceedings.

Top Down View - User Defined Ball Height

- Top down view of PCB
- Capable of multiple slices at user defined ball heights

- Automated image analysis
 - Ball Diameter
 - Void %
 - Void Diameter
- Pre-defined slices might not match actual void location
- Void % is subjective based on programming parameters

EXPO" 2012

A P FX

IPC

- Top down view of PCB
- High resolution
- Flat Image

ally published in the IPC APEX EXPO Proce

- View represents maximum ball size and maximum void size
- Void size and ball diameter can change based on x-ray tube voltage / current

View is looking down on PCB

Cross-Sectioning

High Resolution CT Scan

Horizontal Inspection

- Non-destructive
- Metrology Full dimensional analysis of solder / component characteristics
- Infinite cross sectioning capability
- Analysis is time consuming, with no automated analysis
- Geared toward Failure Analysis
- Costly for large form factors, up 36"x 48"scannable area

BEFORE & AFTER VOID CHARACTERIZATION

Before / After – Example 1

<u>2D X-ray</u>

Before Reflow

<u>3D AXI</u>

Before Reflow

After Reflow

After Reflow

After Reflow

Before Reflow

Cross Section

AND DESCRIPTION OF THE OWNER OF T

Before Reflow

After Reflow

<u>2D X-ray</u>

<u>3D AXI</u>

Before Reflow

After Reflow

After Reflow

Before Reflow

Cross Section

CT Scan

Before Reflow

After Reflow

After Reflow

Before / After Results – 3D AXI

originally published in the IPC APEX EXPO Proceedings.

3D AXI									
				After					
			Before	Reflow - %	% Void				
			Reflow - %	Area	Area				
Component	Pin Location	Oven Profile	Area Voided	Voided	Increase				
Sample 1	37	Long Soak	19.92%	21.60%	8.43%				
Sample 1	122	Long Soak	18.57%	23.67%	27.45%				
Sample 2	6	Long Soak	15.12%	0.00%	-100.00%				
Sample 2	318	Long Soak	13.15%	23.36%	77.64%				
Sample 2	733	Long Soak	12.04%	14.44%	19.93%				
Sample 2	2254	Long Soak	10.73%	0.00%	-100.00%				
Sample 3	2090	Medium Soak	16.00%	41.57%	159.81%				
Sample 4	111	Medium Soak	19.40%	28.32%	45.98%				
Sample 5	363	Ramp to Peak	16.59%	19.38%	16.82%				
Sample 6	521	Ramp to Peak	13.10%	35.00%	167.18%				
Sample 6	1165	Ramp to Peak	10.73%	25.79%	140.35%				
Sample 6	1185	Ramp to Peak	10.73%	21.77%	102.89%				
Sample 6	1385	Ramp to Peak	18.77%	43.82%	133.46%				
Sample 6	1388	Ramp to Peak	15.72%	22.80%	45.04%				
Sample 7	917	Vapor Phase	12.75%						
		Vapor w /							
Sample 7	1174	Vacuum	24.00%						
		Vapor w /							
Sample 7	1679	Vacuum	12.00%						
Sample 8	366	Vapor Phase	22.43%						
Sample 8	2194	Vapor Phase	12.37%						
		Vapor w /							
Sample 9	275	Vacuum	11.89%						
		Vapor w /							
Sample 9	379	Vacuum	14.89%						

APEX EXPO" 2012

Pre-Reflow

Post-Reflow

3D AXI Top Down Mid-ball View

CT Scan Perpendicular view

 Max void size position does not always align with pre-defined AXI slices

Before / After Results – 2D X-ray

ally published in the IPC APEX EXPO Proceedings.

2D X-ray									
			Before Reflow	After Reflow -					
			- % Area	% Area	% Void Area				
Component	Pin Location	Oven Profile	Volded	Volded	Increase				
Sample 1	3/	Long Soak	15.90%	16.40%	3.14%				
Sample 1	122	Long Soak	15.80%	15.20%	-3.80%				
Sample 2	6	Long Soak	12.00%	0.00%	-100.00%				
Sample 2	318	Long Soak	11.70%	15.70%	34.19%				
Sample 2	733	Long Soak	13.70%	16.00%	16.79%				
Sample 2	2254	Long Soak	11.80%	0.00%	-100.00%				
Sample 3	2090	Medium Soak	17.00%	23.40%	37.65%				
Sample 4	111	Medium Soak	16.60%	18.10%	9.04%				
Sample 5	363	Ramp to Peak	11.60%	11.30%	-2.59%				
Sample 6	521	Ramp to Peak	15.20%	20.10%	32.24%				
Sample 6	1165	Ramp to Peak	11.00%	15.40%	40.00%				
Sample 6	1185	Ramp to Peak	9.90%	11.10%	12.12%				
Sample 6	1385	Ramp to Peak	25.30%	28.50%	12.65%				
Sample 6	1388	Ramp to Peak	13.60%	17.10%	25.74%				
Sample 7	917	Vapor Phase	16.80%	0.00%	-100.00%				
		Vapor w /							
Sample 7	1174	Vacuum	11.74%	0.00%	-100.00%				
		Vapor w /							
Sample 7	1679	Vacuum	11.70%	0.00%	-100.00%				
Sample 8	366	Vapor Phase	21.30%						
Sample 8	2194	Vapor Phase	9.70%						
		Vapor w /							
Sample 9	275	Vacuum	11.40%	0.00%					
		Vapor w /							
Sample 9	379	Vacuum	14.30%	0.00%					

APEX EXPO 2012

IPC

Pre-Reflow

Post-Reflow

MANNA

- Max ball diameter, void diameter with only x,y void position information
- Void diameter increase not proportional to void %
 area increase

Before / After Results – CT Scan

published in the IPC APEX EXPO Proceedings.

CT Scan										
								Percent Y -		
			Before - Void	Before - Void	After - Void	After - Void Y-	Percent X -	Dim		
Component	Pin Location	Oven Profile	X-Dim (um)	Y-Dim (um)	X-Dim (um)	Dim (um)	Dim Increase	Increase		
Sample 1	37	Long Soak	228.73	264.25	265.39	317.90	16.0%	20.3%		
Sample 1	122	Long Soak	234.53	292.93	333.08	392.93	42.0%	34.1%		
Sample 2	6	Long Soak	171.42	182.96	176.91	204.34	3.2%	11.7%		
Sample 2	318	Long Soak	205.07	260.82	304.17	406.58	48.3%	55.9%		
Sample 2	733	Long Soak	221.06	255.09	311.70	391.72	41.0%	53.6%		
Sample 2	2254	Long Soak	205.43	273.83	245.52	338.25	19.5%	23.5%		
Sample 3	2090	Medium Soak	278.26	331.69	389.63	475.51	40.0%	43.4%		
Sample 4	111	Medium Soak	233.43	306.76	288.22	363.27	23.5%	18.4%		
Sample 5	363	Ramp to Peak	241.36	189.54	248.69	316.29	3.0%	66.9%		
Sample 6	521	Ramp to Peak			365.50	466.49				
Sample 6	1165	Ramp to Peak			395.58	270.45				
Sample 6	1185	Ramp to Peak								
Sample 6	1385	Ramp to Peak			414.28	478.52				
Sample 6	1388	Ramp to Peak								

• CT Imaging allows for complete void and ball characterization

APEX EXPO 2012

Cross-Section Results

ally published in the IPC APEX EXPO Proce

Physcial Cross Section										
Componen	Pin Location	Oven Profile	Max Void X	Void Y	% Void Area					
Sample 1	37	Long Soak	183.69	171.48	11.2%					
Sample 1	122	Long Soak	169.22	161.46	10.0%					
Sample 2	6	Long Soak	195.94	219.36	14.6%					
Sample 2	318	Long Soak								
Sample 2	733	Long Soak								
Sample 2	2254	Long Soak								
Sample 3	2090	Medium Soak	207.07	193.75	15.5%					
Sample 4	111	Medium Soak	219.32	182.62	14.2%					
Sample 5	363	Ramp to Peak	213.75	203.77	15.0%					
Sample 6	521	Ramp to Peak								
Sample 6	1165	Ramp to Peak	283.92	302.87	29.6%					
Sample 6	1185	Ramp to Peak								
Sample 6	1385	Ramp to Peak	262.73	227.16	22.0%					
Sample 6	1388	Ramp to Peak	251.6	220.49	18.9%					

APEX EXPO 2012

IPC

- Measurements are most accurate among utilized technologies
- Difficult to know which direction to grind into ball without other x-ray tools as a guide
- Difficult to grind parallel to component package
- Easy to stop short, or grind past maximum void position

PROCESS CONSIDERATIONS FOR VOID MINIMIZATION

Oven Reflow Profiles

riginally published in the IPC APEX EXPO Proce

Void Growth Analysis

EXPO[®] 2012

4 PEX

IPC

Profile	2D X-ray Top Down Slice	3D AXI Top Down Slice	CT Scan Perp. Slice	
Long Soak	13%	33%	31%	
Medium Soak	23%	103%	31%	
Ramp to Peak	20%	101%	35%	

- X-ray void measurements are not 100% driven by increase / decrease in void size.
- Measurements for x-ray are affected by void positioning within ball and changes in ball diameter.
- Full void characterization requires both parallel and perpendicular slices through void area

VOID REMOVAL

Vapor Phase Details

Machine was batch with Galden 235 liquid Vacuum pressure = 20 mbar Vacuum duration = 15 sec

Void Removal

Before Reflow Void % = 16.80% Before Reflow Void % = 11.74%

Before Reflow Void % = 11.40%

Vapor Phase w/ Vacuum

Vapor Phase w/ Vacuum

Vapor Phase w/ Vacuum

- Voids reduced / removed using vapor phase reflow of a dead-bug component under vacuum
- Void reduction / removal causes minor deformation of ball diameter

CONCLUSIONS

Technology Comparison

TPS

CAN

	2D X-ray	3D AXI	CT Scan	Cross-Section
Image Resolution	3	4	2	1
Preparation Time	1	2	3	4
Automation	2	1	3	4
Measurement Accuracy	3	4	2	1
Slice Qty & Position	4	2	1	3
Analysis Time	2	1	3	4
Void Location	4	3	1	2

riginally published in the IPC APEX EXPO Proceedings.

1 = Best4 = Worst

APEX EXPO 2012

IPC

nal Thoughts

Final Thoughts

₽0™ 2012

- 3D AXI is necessary to screen out significant quantities of components as data points, prior to further characterization
- Combination of available void detection technologies are needed for complete characterization of process and components, especially for increased complexity (i.e. via in pad, finer pitch, etc,,,)

published in the IPC APEX EXPOP

- PCB and Component Design, Reflow profile parameters as well as chemistry can all affect growth and positioning of voids
- High Resolution CT Imaging allows for a complete analysis of components before and after assembly in non-destructive manner
- While IPC 7095B introduced tables for void process indicators and troubleshooting and JEDEC Std 217 has a guideline for component voids allowed (pre-reflow), a clear joint industry specification needs to be considered to create better linkage between component manufacturing and PCB Assembly & Inspection

Acknowledgements

- Jonathan Crilly Flextronics
- Eric Cruz Flextronics
- Taylor Blair Flextronics
- Nick Brinkhoff North Star Imaging
- Florian Wuest IBL
- Jochen Lipp IBL

THANK YOU