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ABSTRACT 
Accelerated temperature cycling (ATC) was used to assess 
the thermal fatigue reliability of a Pb free, 37.5 mm fully 
populated, 1284 I/O ball grid array (BGA) package 
assembled with backward compatible, mixed alloy (Pb free 
BGA/SnPb paste) assembly processes. Two different 
temperature cycling profiles were used in the evaluation. 
The baseline profile was the standard accelerated 
temperature test cycle of 0 to 100 C as prescribed by the 
IPC-9701 attachment reliability guideline (TC1). The 
second profile was a mildly accelerated cycle using a less 
aggressive temperature extremes and a smaller T with a 
resultant range of 20 to 80 C. The limited temperature 
extremes provided by the latter cycle result in lower strains 
more typical of service conditions. The surface mount 
assembly was done using custom SnPb eutectic soldering 
profiles designed to optimize the complete (full) mixing of 
the Pb and to create two additional test cells with levels of 
Pb mixing in the Pb-free BGA balls defined as low and 
medium. To complete the reliability comparisons and 
provide experimental controls, SAC405-SAC405 and SnPb-
SnPb assemblies were included.   

The results indicate that backward compatible, mixed alloy 
assemblies should have acceptable reliability under service 
conditions. Complete or full Pb mixing is preferred in order 
to achieve consistent and acceptable solder joint reliability.   

Key words: Pb-free solder backward compatibility, mixed 
alloy assembly, thermal fatigue, and accelerated temperature 
cycling   

INTRODUCTION 
Although there has been widespread conversion to Pb-free 
manufacturing in the electronics industry, many high 
reliability equipment producers continue to manufacture and 
support tin-lead (SnPb) electronic products. Certain high 
reliability products from the telecommunication, military 
and medical sectors manufacture using SnPb solder 
assembly and remain in compliance with the RoHS 
Directive (restriction on certain hazardous substances) by 
invoking the European Union Pb-in-solder exemption [1]. 

Sustaining SnPb manufacturing has become more 
challenging because the global component supply chain is 
converting rapidly to Pb-free offerings and has a decreasing 
motivation to continue producing SnPb product for the low-
volume, high reliability end users [2]. Availability of 
critical, larger SnPb BGA components is a growing concern. 
Because complete Pb-free conversion is not always a viable 
option, these BGA availability issues can force companies 
to use Pb-free BGAs with the SnPb solder assembly 
process. Assembling Pb-free BGAs with a SnPb surface 
mount assembly process often is referred to as backward 
compatible, mixed alloy, or mixed metals processing. 
Mixed alloy processing is an alternative manufacturing path 
when immediate, complete product conversion to Pb-free 
manufacturing is not possible.  

The technical challenges associated with mixed alloy 
processing have been addressed in a significant number of 
studies [3-51] and those results have been reviewed and 
discussed in detail in previous publications [3, 48-53]. Many 
of those studies have focused on the optimization of process 
parameters that produce acceptable mixed alloy solder joint 
quality. This approach is understandable because mixed 
alloy assembly is not a drop-in replacement process. Mixed 
alloy studies using smaller BGA devices have shown that 
acceptable thermal fatigue reliability can be achieved with 
the backward compatible process [3, 6, 49, 53]. However, 
there are minimal mixed alloy thermal fatigue reliability 
data for BGA packages with a body size greater than 35 mm 
[49-53]. It is desirable to develop reliability data for larger 
packages because achieving acceptable mixed alloy 
assembly becomes more challenging as the package size and 
board complexity increase. The negative effects of large 
thermal mass and component warpage on Pb mixing was 
demonstrated in the work of Kinyanjui et al [48]. Therefore 
it is critical to understand the effect of imperfect mixing on 
reliability of large packages. In general, the literature 
indicates that there are fundamental inconsistencies and 
gaps that limit the understanding of mixed alloy reliability, 
particularly with larger body packages [4, 15, 16, 18, 32, 
and 35, 48-53]. 
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Although recent studies, including some by the current 
authors, have demonstrated acceptable fatigue performance 
of large BGA mixed alloy assemblies [49, 51, 52-54], there 
have been studies that indicate additions of Pb degrade the 
reliability of Pb-free solder joints. The results of work by 
Borgesen and Meilunas suggest that the reliability of mixed 
assemblies could be a strong function of the thermal cycling 
parameters and the acceleration factor for those mixed 
assemblies [55]. They have hypothesized that mixed alloy 
assemblies may have a lower acceleration factor hence 
predictions based on standard accelerated test parameters 
could over estimate mixed alloy reliability. Specifically, 
they suggest that mixed joints may perform less well 
compared to pure Sn-Ag-Cu (SAC) or SnPb if testing is 
done using smaller temperature ranges (T) or longer 
dwell times characteristic of most service conditions.      
 
In the current study, accelerated temperature cycling (ATC) 
was used to assess the thermal fatigue reliability of a Pb 
free, 37.5 mm fully populated, 1284 I/O ball grid array 
(BGA) package assembled with mixed alloy (Pb free 
BGA/SnPb paste) processing. The surface mount assembly 
was done using a soldering profile designed to produce 
complete or full Pb mixing in the BGA solder balls [52]. In 
addition to the mixed alloy samples, the test program 
included SAC405-SAC405 and SnPb-SnPb assemblies for 
reliability comparisons.  
 
Two different temperature cycling profiles were used in the 
evaluation. The baseline profile was the standard 
accelerated temperature test cycle of 0 to 100 C as 
prescribed by the IPC-9701 attachment reliability guideline 
(TC1) [56]. The second profile was a mildly accelerated 
cycle using a smaller T with a temperature range of 20 to 
80 C. The limited temperature extremes provided by the 
latter cycle result in lower strains more typical of service 
conditions [57]. The objectives were twofold: 1) develop 
reliability data for a large BGA with full and partial levels 
of mixing, and 2) test the Borgesen and Meilunas hypothesis 
by comparing the reliability of fully mixed assemblies under 
conditions of standard and mildly accelerated thermal 
cycles.  
 
EXPERIMENTAL 
Test Vehicle  
The attributes of the Package Test Vehicle are listed in 
Table 1 and images of the top view of the package and 
populated printed circuit board test vehicle are shown in 
Figure 1. 
 
The printed circuit board test vehicle is an 8 layer board 
with dimensions 12 inches x 8 inches x 0.093 inches. The 
board contains four identical component footprints. The 
component sites have metal defined (MD) land patterns that 
are 17 mils in diameter and the surface finish on the test 
vehicle is organic solderability preservative (OSP).  
 
There is one daisy chain net for each land pattern. Daisy 
chain nets from each of the components patterns are brought 

out to a card edge connector and soldered connections are 
used to monitor the resistances of the daisy chain nets 
during temperature cycling. 
 
Table 1: The package attributes for the 1284 I/0 BGA test 
vehicle used in the experimental study.  

TV Description Package TV attributes 
Package Size 37.5 x 37.5 mm 

Die size 10.15 x 20.98 mm 
Substrate thickness 1.383 +/- 0.015 mm 
Solder ball diameter 0.6 mm 

Ball Pitch 1.0 mm 
Solder ball metallurgy SAC 405 

Ball count 1284 

Ball pattern 
fully populated array 

w/ 7 corner sacrificial balls 
Package surface finish NiPdAu 

 

 
Figure 1: Top views of the populated printed circuit board 
and the BGA Package Test Vehicle.  
 
Surface Mount Assembly   
This work is part of a larger experimental study to evaluate 
the effect of various Pb mixing levels on solder joint 
thermal fatigue reliability in a large, high density BGA 
component [53]. In the current study, the thermal cycling 
profile is the main experimental variable and only the effect 
of full Pb mixing is explored.   
 
A sample size of either 16 or 8 was used for the various lead 
free, full mixed, or SnPb legs. Table 2 lists the details for 
each of the 3 basic experimental legs in this study. The 
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surface mount profile development and detailed supporting 
metallography are described in a previous publication [53].   
 
Table 2: Assembly details and sample sizes for all the 
experimental legs.  

 
 
Microstructural Characterization and Failure Analysis 
A baseline characterization was performed on representative 
board level assemblies from each of the experimental legs. 
These baselines document the basic microstructures before 
temperature cycling for comparison to samples removed 
from the temperature cycling chambers for failure analysis. 
Microstructural characterization and failure analysis was 
done using optical metallography (destructive cross-
sectional analysis), polarized light microscopy (PLM), and 
scanning electron microscopy (SEM). The SEM operating 
in the backscattered electron imaging (BEI) mode was used 
to differentiate phases and characterize the extent of Pb 
mixing in the SAC microstructure. The effectiveness of the 
BEI techniques was reported in previous studies on mixed 
assembly [3, 49, 53].The SEM was used to confirm the 
thermal fatigue failure mode.  
 
Low magnification backscattered electron images of the 
three experimental Legs, designated as Pb-free, Full Pb 
Mixing, and eutectic SnPb, are shown in Figure 2. This 
combination of backscattered imaging and low 
magnification is useful for comparing the distribution of Pb 
within the Full Pb Mixed and eutectic SnPb solder balls.   
 
A Full Pb Mixed sample is shown in Figure 2a. In the 
backscattered imaging mode, the Pb-rich phase appears as 
bright white regions in the gray Sn matrix. The Pb-rich 
precipitates are dispersed from the bottom to the top of the 
solder ball. The eutectic SnPb solder paste has mixed 
throughout the solder ball during reflow assembly, which is 
the basic criterion for Full Mixing.  
 
A eutectic SnPb sample is shown in Figure 2b. As expected, 
the 37 wt. % Pb content of this alloy results in a much 
higher volume fraction of the Pb-rich phase.   
 
A Pb-free baseline sample shown in Figure 2c contains a 
significant volume fraction of small Ag3Sn intermetallic 
precipitates along with Cu6Sn5 intermetallic precipitates in a 
matrix of Sn (gray background). There is insufficient 

contrast to resolve the Ag3Sn intermetallic precipitates at 
this magnification, but the randomly dispersed Cu6Sn5 

precipitates appear as very small dark regions.   

 
Figure 2: SEM backscattered images showing the basic 
microstructures of the BGA balls at low magnification for a) 
Full Pb Mixing, b) eutectic SnPb, and c) Pb-free.  
 
A comparison of the detailed features of the SAC 
microstructures for the Full Pb mixed and Pb-free SAC405 
samples is shown in the backscattered electron micrographs 
of Figure 3. There are marked differences in the time-zero 
SAC microstructures, in addition to the obvious addition of 
Pb to the mixed sample. The Pb-free SAC405 
microstructure consists of primary Sn dendrites surrounded 
by wide regions containing very small equiaxed Ag3Sn 
intermetallic particles and Sn that are the result of a binary 
eutectic decomposition reaction. The Full Pb Mixed 
microstructure also contains primary Sn dendrites but in 
contrast, has fewer, substantially larger Ag3Sn intermetallic 
particles at the Sn dendrite boundaries. The Ag3Sn particles 
in the Full Pb Mixed sample also tend to be elongated with 
an almost lamellar morphology. There is no definitive 
correlation in the literature between particle size and 
reliability but some results have suggested that larger 
diameter or lamellar shaped particles may be more resistant 
to particle coarsening or ripening, which is the precursor to 
recrystallization and fatigue crack propagation [45, 58].   
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Figure 3: High magnification backscattered electron images 
illustrating the different basic solder microstructures in the 
Full Pb mixed and Pb-free SAC405 BGA solder balls [53].   
 
In Pb-free SAC solder alloys, Sn is the major component of 
the alloys and β-Sn, which has a tetragonal unit cell, 
displays large anisotropies in its physical and mechanical 
properties [59-60]. Thus, it is reasonable to hypothesize that 
the orientations of the Sn grains are critical in determining 
the thermomechanical response of SAC solder joints  [61, 
62]. Large scale BGA solder joints generally display one to 
three large Sn grains, each with a number of dendrites with 
the same crystallographic orientation [63]. Frequently this is 
called the “beach ball” morphology. A fine grain interlaced 
twinned morphology also may form depending on the 
solidification conditions [64]. Figure 4 shows examples 
from the literature of these different Sn grain morphologies 
in metallographic cross sections of Pb-free SAC solder balls 
obtained with polarized light microscopy (PLM) or cross 
polarized imaging [65,66]. The PLM technique is useful for 
identifying basic Sn microstructures following reflow and 
solidification.  
 
For eutectic SnPb solder, which solidifies with a two phase 
microstructure, Sn grain morphology is not a factor. 
However, mixed alloy solder joints solidify as Pb-free 
joints, albeit with a significant contamination of Pb. The 
PLM images in Figure 5 compare the Sn grain 
morphologies of a pure SAC405 Pb-free solder joint to a 

Full Pb mixed, SAC405 solder joint from the current 
experiment. In both cases, the Sn grain morphologies are 
single grain or beach ball, and there is no indication that the 
presence of Pb has a significant effect on Sn grain 
solidification.  

 
Figure 4: Polarized light micrographs of SAC 
microstructures illustrating three different Sn grain 
morphologies: a) interlaced twinning, b) “beach ball”, and 
c) single grain.   

Figure 5: Polarized light micrographs of a) Pb-free SAC405 
and b) Full Pb mixed Sn grain morphologies. The 
morphologies are single grain or beach ball independent of 
Pb content.     
 
Accelerated Temperature Cycling 
The components and the test circuit boards were daisy 
chained to allow electrical continuity testing after surface 
mount assembly and in situ, continuous monitoring during 
thermal cycling. The resistance of each loop was 
independently monitored during the temperature cycle test.  
All assembled circuit boards were thermally cycled from 0 
C to 100 C or from 20 C to 80 C. Both cycling profiles 
used a 10 minute ramp time between temperature extremes 
and 10 minute hot and cold dwell times in accordance with 
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the IPC-9701A industry test guidance [56]. The solder joints 
were monitored continuously during thermal cycling with an 
event detector set at a resistance limit of 1000 ohms. A 
spike of 1000 ohms for 0.2 microseconds followed by 9 
additional events within 10% of the cycles to the initial 
event was flagged as a failure. The failure data are reported 
as characteristic life  (typically the number of cycles to 
achieve 63.2% failure) and slope  from a two-parameter 
Weibull analysis. 
 
RESULTS AND DISCUSSION 
Test Results  
The thermal cycling test results are summarized in Table 3 
and shown graphically in the Weibull plots in Figure 5 for 
the standard 0/100 C thermal cycle [53], and Figure 6 for 
the Mild Acceleration 20/80 C thermal cycle.  
 
Table 3: Summary of temperature cycling failure statistics.   

 

 
Figure 6: Weibull plot for the 1284 I/O PBGA comparing 
the performance of SAC405 solder balls to SAC405 with 
Full Pb Mixing for the standard 0/100 C thermal cycle. The 
plot also includes the results for the eutectic SnPb solder 
leg.   
 

 
Figure 7: Weibull plot for the 1284 I/O PBGA comparing 
the performance of SAC405 solder balls with and without 
Pb mixing. The plot also includes the results for the eutectic 
SnPb solder leg.   
 
In the standard 0/100 C thermal cycling test, the Full Pb 
Mixed and Pb-free legs outperform the eutectic SnPb by 
factors of 2.5 and 3 respectively. In the mildly accelerated 
20/80 C test, the Full Pb Mixed and Pb-free legs 
outperform the eutectic SnPb almost by a factor of 5. The 
performance of the Full Pb Mixed leg is comparable to the 
Pb-free leg and substantially better than the SnPb eutectic 
leg using the smaller temperature ranges (T) characteristic 
of many service conditions. These results provide a strong 
indication that the acceleration factor for mixed alloy 
assemblies is comparable to or greater than Pb-free or SnPb.  
 
The 0/100 C cycle accelerates failures in Pb-free and Full 
Pb Mixed about 4 times faster than in 20/80 C testing, and 
about 2.5 times faster in eutectic SnPb. Both of these results 
are consistent with previously published work using the 
identical 20/80 C thermal cycle [57].   
 
In the 0/100 C cycle, the Full Pb Mixed leg outperforms 
the Pb-free leg by about 20% based on the characteristic 
lifetimes. While it can be argued that this difference is 
statistically significant, there is a large difference in Weibull 
slope (β) between these two data sets and this should be 
taken into account when making characteristic lifetime 
comparisons between the data sets.  A comparison based on 
first failures for example, does not show much of a 
difference. Note also that with the 20/80 C testing, the 
characteristic lifetimes of the Full Pb Mixed Pb-free legs are 
indistinguishable. Additionally, this study used a sample 
size of only 16 components per leg (the preferred number is 
32 [56]) due to resource limitations in the experimental 
plan.  
 
Failure Analysis 
Metallographic failure analysis was performed to document 
the solder joint failures and characterize the thermal fatigue 
failure mechanism. The backscattered electron images in 
Figure 8 show solder joint cracking in failed BGA solder 
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joints from the Pb-free SAC405, Full Pb mixed, and SnPb 
eutectic legs for the standard 0/100 C cycle and the mild 
20/80 C cycle. The failures in all three legs occur at the 
package side of the solder joint and under the die edge, 
which is a common location for BGA fatigue cracking.  The 
lands on the BGA package substrate are solder mask 
defined , and this design feature is more prone to cracking 
than the metal defined lands that exist on the PCB side in 
this study.   
 

 
Figure 8: Low magnification backscattered electron images 
showing thermal fatigue cracking in the Pb-free, Full Pb 
Mixed, and SnPb samples for the 0/100 C and 20/80 C 

thermal cycling profiles. 
 
Figure 9 compares higher magnification images of thermal 
fatigue cracking in the Pb-free and Full Pb Mixed solder 
assemblies. The crack paths are near the package-side 
intermetallic layer but through the bulk solder in all 
samples. All of the samples have Ag3Sn precipitate 
coarsening in the strain-localized region surrounding the 
fatigue crack and show signs of recrystallization of Sn 
grains. The fracture modes are typical of thermal fatigue in 
Pb-free solders and are similar for the Pb-free and Full Pb 
mixed samples in both the standard and mild acceleration 
factor tests. In the Full Pb Mixed samples, there is no 
evidence of an interaction between the Pb phase (white) and 
the propagating fatigue crack. This observation indicates 
that the low Pb content from mixed assembly has no 
appreciable influence on the fatigue cracking of the Pb-free 
solder. These results are consistent with the Weibull 
statistics and with results from previous investigations [e.g., 
52-54].  
 

 
Figure 9: Higher magnification images of thermal fatigue 
cracking in the Pb-free and Full Pb Mixed solder 
assemblies. The fracture modes are similar for the Pb-free 
and Full Pb mixed samples in both the standard and mild 
acceleration factor tests. 

 
Further insight into the performance of the Pb mixed 
assemblies can be obtained by comparing the 
microstructural evolution and damage mechanism to that of 
Pb-free assemblies. The recrystallization of Sn during 
thermal cycling has been related directly to crack 
propagation in SAC solder joints [67-69]. Yin et al have 
proposed a damage accumulation model that correlates the 
evolution of the solder microstructure and thermal cycling 
fatigue [68]. A fatigue crack begins to propagate along the 
network of grain boundaries through the recrystallized area 
until failure. The recrystallization is found mainly adjacent 
to high strain regions on the component side of the solder 
joint.  This recrystallization varies systematically with the 
density of precipitates in a solder joint. Arfaei et al has 
studied the microstructural evolution in Pb-free solders 
during thermal cycling with the mildly accelerated 
conditions of the 20/80 C thermal cycle [70].  They found 
that process of precipitate coarsening, recrystallization, and 
fatigue crack propagation in the 20/80 C thermal cycle, 
shown in the polarized light micrograph in Figure 10, is the 
same as in the 0/100 C cycle.  
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Figure 10: A polarized light image showing Sn 
recrystallization in a Pb-free BGA thermally cycled to 
failure using the 20-80°C mild acceleration factor profile.  
From Arfaei et al [70].     
 
The fracture characteristics from the current metallographic 
failure analysis (Figure 9) indicate that the failure mode is 
the same in the Pb-free and Full Pb mixed samples from 
either the standard or and mild acceleration factor tests. The 
series of images shown in Figures 11 through 13 provide 
further evidence that the characteristic Pb-free failure mode 
is not altered by the presence of Pb and is the same with the 
standard and mild acceleration thermal cycling test profiles. 
Figure 11 shows optical (a) and polarized light (b) images of 
a Pb-free BGA thermally cycled with the 0/100°C profile. 
These images illustrate the process of microstructural 
evolution, which consists of precipitate coarsening and 
recrystallization in the high strain region followed by 
fatigue crack propagation along recrystallized Sn 
boundaries.   

 
Figure 11: Optical (a) and polarized light (b) images of a 
Pb-free BGA thermally cycled with the 0/100°C profile. 
The failure process in Pb-free solder consists of Ag3Sn 
precipitate coarsening in the high strain region followed by 
and recrystallization and fatigue crack propagation.   
 

Figures 12 and 13 show optical and polarized light images 
of Full Pb Mixed samples from the 0/100°C test and the 20-
80°C test respectively. These images confirm that the Full 
Pb Mixed samples fail according to the microstructural 
evolution and damage mechanism proposed by Yin for Pb-
free solder assemblies [68]. These samples have the same 
characteristics as the Pb-free failure shown in Figure 11, 
with precipitate coarsening and recrystallization in the high 
strain region followed by fatigue crack propagation along 
recrystallized Sn boundaries.   

 
Figure 12: Optical (a) and polarized light (b) images of a 
Full Pb Mixed BGA thermally cycled with the 0/100°C mild 
acceleration factor profile.  
 

 
Figure 13: Optical (a) and polarized light (b) images of a 
Full Pb Mixed BGA thermally cycled with the 20/80°C mild 
acceleration factor profile.   
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These observations of microstructural evolution combined 
with the Weibull statistics from the two thermal cycling 
tests indicate that the resultant Pb content from mixed 
assembly has no appreciable influence on the thermal 
fatigue performance or thermal fatigue failure mode of the 
Pb-free solder. 
 
CONCLUSIONS 
The results from this experimental study show that the 
thermal fatigue performance measured by characteristic 
lifetime of the large-body 1284 I/O full array BGA with Full 
Pb Mixed solder joints, is comparable to that of the 1284 
I/O BGA with Pb-free SAC405 solder joints. The Full Pb 
Mixed and the SAC405 Pb free assemblies perform equally 
well when tested with the standard 0/100 C thermal cycle 
as with the mildly accelerated 20/80 C cycle. Additionally, 
the mixed and Pb-free assemblies outperform the SnPb 
eutectic assemblies by a factor of 2.5 to 3 in 0/100 C 
testing and by a factor of almost 5 in 20/80 C testing. The 
latter result indicates that the acceleration factor for mixed 
alloy assemblies is comparable to or greater than Pb-free or 
SnPb.  
 
There is no indication from the thermal cycling data or the 
metallurgical failure analysis that the Pb introduced by the 
mixed alloy assembly has a significant impact on thermal 
fatigue performance. The fracture features and failure 
modes of thermally fatigued mixed microstructures are the 
same as the fracture features of Pb-free SAC failures and the 
common fracture characteristics are consistent with their 
virtually identical fatigue performance.  
 
Although these experimental results are consistent with 
some previous studies it is important to recognize that in 
practice, mixed alloy assembly is a custom process and its 
level of risk always should be assessed with respect to 
specific package construction, product design, and assembly 
parameters [49]. 
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